Boundary shape identification in two-dimensional electrostatic
problems using SQUIDs

H.T. BANKS ! and F. KOJIMA 2

Abstract — This paper is concerned with a quantitative nondestructive evaluation of conduc-
tors using superconducting quantum interference devices ( SQUIDs ). A measurement system
is described for an electrical potential problem with an unknown boundary. Domain identifi-
cation is discussed within the theoretical framework of a parameter estimation problem for the
electrostatic field analysis. Applying the method of mappings to the problem considered here,
we present computational methods, including theoretical convergence results for the associated
finite dimensional problem identification techniques.

1. INTRODUCTION

Recently, demand has grown for assessing the structural integrity of materials used in
nuclear power plants using advanced sensor technologies. An important effort on such
problems entails quantitative nondestructive evaluation methods in magnetic flux imag-
ing techniques. These methods involve an attempt to characterize structural flaws or
defects which may not be detectable by visual inspection. SQUIDs ( superconducting
quantum interference devices ) have the potential to detect material defects in conductors
due to their extremely high magnetic flux sensitivity [1]. In this paper, we propose a
computational method for recovering defect shapes with magnetic flux density data from

high critical temperature SQUIDs (HTc-SQUIDs).

In the proposed nondestructive test, a stationary current density is applied to the conduc-
tor inspected. The magnetic flux density can be measured from a SQUID sensor located
near the conductor. Figure 1 illustrates the inspection process using an HTc-SQUID. As
shown in Fig. 1, the existence of a defect ( represented by a nonconducting volume ) cor-
rupts the current flows inside the conductor and, as a result, this material defect can be
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detected as the perturbation of magnetic flux data. It is well-known that a mathematical
model for this nondestructive test can be derived from Maxwell’s equations. By Faraday’s
law and Gauss’s law, the electrical potential E satisfies

VxE =0 (1)
V-eE = p (2)

where € and p denote the permittivity and the charge density of the sample specimen,
respectively. We introduce the electrical scalar potential ¢ such that

E=-Vo.

Pick-up coil of SQUID
~ Material flaw
/

O] / p
So L @C S

Sample
|

Fig. 1 Inspection process using HTc-SQUID

Assuming that there is no charge density inside the material and that the conductor is a
homogeneous plate, we can rewrite Eqgs. (1)-(2) as the Laplace equation

V=0 in G3C R, (3)
with non-homogeneous boundary conditions
p=v on IGE. Vé-2n=0 on 9GY UGS,

where (3 and 0Gs = 0GPUAIGY UOGY denote, respectively, the domain and the boundary
of the conductor with a flaw. More specifically, the boundary dGE U dGY denotes the
exterior boundary of the conductor and 9GS characterizes the defect shape. In the above
equations, v denotes the prescribed electrical potentials on dGY. The measurement of
magnetic flux density by HTc-SQUIDs is described by Biot-Savart’s law [2], for z =
(71, 79, 73) € R® — G5,

B(z) =

?

_ Oofho / Vo x(z—a),
G3

4 |z — 2 |3
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where o9 and po denote the electrical conductivity and magnetic permeability of the
conductor, respectively. Such measurements can be obtained by detecting voltage changes
in SQUID magnetmetors. We assume that the measurements are only made on the vertical
direction (z3-axis). Since the voltage change can be measured through the pickup coil,
we can only take the average of the magnetic flux density at the sensor location. Suppose
that z, € R® — (i3 is the location of sensor and S, denotes the region of the pickup
coil with the center z,. The problem considered here is that of identifying, from input
and output data {v, B(z,)}, the geometrical shape of the defect. If we assume that the
conductor is a thin plate and that the defect to be identified is uniform in the x3 direction,
the corresponding electrical potential becomes

(96 B9

Then the observation at z, can be approximated by

~ — O-O’LLO _ ! a¢ _ _ ! a¢ _ 11-3 !
By, (z,) =Y, = =S, Js, l/Gg {(;L'g 51;2)@1;/1 (21 xl)a$/2 |z — 2'|77d2’| dx,
(5)

where |.S,| denotes the crosssectional area of the HTc-SQUID. From our assumptions, the
identification problem is well approximated by using a 2-D spatial domain. Thus, in this
paper, our attention is restricted to a domain identification problem in two dimensions.

This paper is organized as follows. In Section 2, the mathematical model for the system
is described by the Laplace equation in a two-dimensional spatial domain. The measure-
ments are derived from Biot-Savart’s law. Then these problems are treated as domain
identification problems in electrostatic field analysis. In Section 2, we also formulate this
problem in an abstract setting in a Hilbert space. The ideas proposed in Banks et. al.,
[3][4] using the “method of mappings” are adopted to the problem considered here. In
Section 3, for computational purposes, we approximate the Hilbert space by finite dimen-
sional subspaces and we discuss convergence analysis for the approximate identification
problems. A practical computational algorithm is proposed briefly in the last section.

2. PROBLEM FORMULATION AND BASIC ASSUMPTIONS

Let GG be the sectional plane of the sample specimen (G5 as shown in Fig. 1. Let ¢ be
a constant vector which characterizes an unknown defect domain where ¢ belongs to an
admissible parameter set () such that

(H-0) The admissible parameter set () is a compact subset of RM.

We consider a bounded domain C,(C ' C R?*) which is parametrized by unknown values
of q. As depicted in Fig. 2, the bounded domain (7, is considered as the system domain
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such that G, = G — C,. Corresponding to the boundary G2, GY and 9GS in three
dimensions, we assume the boundary of (G, consists of the following components:

0G, = U, 06, | ac,

We further assume that meas(G,) > é > 0, uniformly for ¢ € @, for some positive 6.

Fig. 2 Spatial domain G in two dimensions

Thus, from Eqgs.(3) and (4), the system can be rewritten by

Vi = 0 in @, (6)
¢ = v, on J0G;, 1=1,3, (7)
Vé-n = 0 on 0G,UIC,, =24 (8)

Suppose that the SQUID sensor is scanned on the z; — x5 plane and measurements are
made at {1’; = (:cip,;z;ép) ™. Let S; be the region of the pick-up coil whose center is
located at z;. We also assume that the distance between the surface of the plate and
SQUID sensor is taken as h. Then, from (5), the observation in case of two-dimensions is

described by

: e YTIYAN / ) 06 09
Y, = — , — — —
v 4[5 Jsi l Gy {(“’2 ) g ~ B W50
X {(1’1 — i)+ (g — 2h)* + hQ}_S/z d:c'ld;z;g] dxidz,,
for ¢=1,2,---,m, (9)
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where A denotes the thickness of the plate. Let ¢* be an arbitrary smooth function on
G, satisfying
gb* = U; in 8(}2, = 1,3

Then the system (6)-(8) is equivalent to the following boundary value problem :
b=u+g

where w is the solution of

Viu = -V in @, (10)
u = 0 on 0G;, =13, (11)
Vu-n = =V¢*-n on 90G;UIC,, =24 (12)

Let V, be the closed subset of functions in H'(G,) satisfying the homogeneous boundary
conditions on 0G;, 1 = 1,3, i.e.,

Vo={¢ |y e H (G,), »=00ndG;, i=1,3}.

endowed with the norm

ol & [ VP, (13)
Lemma 1. Suppose that
(C-1) ¢ is an element of V., the inhomogeneous analogue of V; defined by
VqU:{sz/JEHl(Gq), Y =wv; on 0G;, 1 =1,3 }.

Then, for every ¢ € @, there exists a unique solution ¢(q) € V" of (6)-(8) in the sense
that

u=¢—¢ eV,
satisfies (10)-(12). The solution u of (10)-(12) is in the weak sense, i. e.,
o(q)(u, ) = —o(q)(¢7,¢) for € V). (14)

Here o(q)(-,-) denotes a sesquilinear form on V, x V, defined by
o(q)(p. ) = /G Vi Vipda. (15)

Moreover, we have
[u(q)lv, < Ki|o™|y,

where K is a constant independent of gq.



Remark. We note that even though ¢* is in V,’ and not in V,, the value of o(q)(¢*, %)
for ¢» € V, can be defined as in (15) and the value of [¢*|y, is well defined as in (13). We
tacitly assume in the statement of Lemma 1 and in subsequent discussions that such an
interpretation is understood.

Proof. From (15), for arbitrary ¢ € V,, o(q) is V-elliptic with constant C; = 1 which
is independent of ¢ since

(@) p0) = [ 1Vlde = Vel 6, = Il (16)

Since we have
o(q) (2, )| < lelv, Y]y,
the linear functional —o(q)(¢*,-) is bounded on V,, i. e.,

| —o(q)(¢" @)l < lelv,[67v, for w eV, (17)

From (16) and (17), we can apply the Lax-Milgram lemma, taking the Hilbert space V,
sesquilinear form o(¢)(+,-), and linear functional —o(q)(¢*, ), respectively. Hence, for
each ¢ € @, there exists a unique solution u € V, in the sense of (14). Similarly, from

(14), (16) and (17), we have

uly, < |=o(g)(¢"u)| < 16"|v, luly,
from which follows
|u|Vq § |¢*|Vq7

thus completing the proof.

For convenience of theoretical developments, we use the polar coordinate system z = (r, 6)
instead of the Cartesian coordinate x = (1, x2) in the sequel. To this end, we introduce
the unknown defect function ¢(,¢q) and the prescribed outer boundary function [(8).
These functions are assumed to be defined on (0,27) and are 27-periodic, respectively.
As depicted in Fig. 3, it is further assumed that the system domain G, can be described
by

Gy, ={(r,0)]0<8<2r, c(0,q) <r<1(0) },

and hence 8 — ¢(0,q) is a parameterized function which is assumed to characterize the
unknown defect shape. The boundary of G, is also defined by

oG, = {(r0) 0,1 <0<b;, r=10)} for i=1,234,
aC, = {(r,0)|0<0<2r, r=1c(0,q) },

where fy = 0 and 0, = 2, respectively. The sesquilinear form (15) can be rewritten as

2 dye 8¢ 10y 09
) ¥) = / /eq ( or ar r 00 @0) drdf. (18)



Fig. 3 The spatial domain GG and its boundary using the polar coordinate system

For the discussions here, we restrict the geometrical structure of the boundary 9G, by
imposing the following hypotheses:

(H-1) For each ¢ € Q, ¢(-,q) € W1 (0,27) and [ € WL (0, 27).
(H-2) There are constants 3; and 35 such that, for ¢ € @,
0<f1<e(b,q) <P <I(f) <oo forin (0,27).

(H-3) There exists a function d : Q@ x @ — R' with d(q,¢) — 0 as |¢ — ¢| — 0 such that
le(-q) = el Dl < dlg,q)  forg, €@,
where | - |1 ., denotes the norm of W1 .

Following standard procedures in the method of mapping techniques ([3],[4],[9]), we in-
troduce the affine mapping = T'(¢)& where z = (r,0) and & = (r,0). The precise form
of T'(q) in this paper is given by

ro= 7,0) = {c(8,q) — 1) e —10)} {7 —10)} + U(h)
0 — @ . (19)

Let G be the reference domain given by
G={i=(0)|0<f<2r, e<i<I()}
which is independent of the parameter ¢ as depicted in Fig. 4.

7



Fig. 4 The reference domain

Then, under this coordinate change T'(¢), the reference domain G is transformed into the
unknown domain G,. Let us define the Hilbert space defined on G,

V={v¢|yeH(G), v)=00n0G; i=1,3}

endowed with the norm

Caef 27 [1O) ot |owl?] -
[v|¢ —/0 /; {‘W + 2 drdo. (20)
Noting that
Ov/]0F 9v/00
vi = | 70 ]
0
VI(q) = L.

we have

¢ (9_7)_1%

or or or
dp _ (T oyop  0p
00 or 90 OF ' 90

drd) = a—Ydfdé.
or



Hence (18) can be transformed into the sesquilinear form on V x V as follows:

1(6) Op O dpdy  Op O
{()8r8r+a()(ar89 aear)

+a3(q)—~—~} didf (21)

where

w2 w0 { Pk |

ala) % 20 he),
wla) 5020

Lemma 2. With the hypotheses (H-0) to (H-3), there exist positive constants
a, A, Ky, and K3 such that, for ¢, € @, the sesquilinear form &(q)(-,) satisfies the
following inequalities for all ¢, € V:

a(Q)(,) = alplp (22)
5(q) (e, )] < Kalplglibly (23)
5(a) (e, ) = 5(Q) (@, )| < Ksd(q, §)lelvl¢ly (24)

where
d(¢,q) =0 as [¢g—q|—0.

Furthermore, «, K,, and K3 can be chosen as constants which are independent of the
parameter vector g.

Proof. From (21), the associated quadratic form is

a1(q)&; + 2a2(q)é1és + as(q)€3
(0N T (9 _ 019y
=7 (af) {7 +(ae) }51 o7 00515”( ) 52]'

For any quadratic form QF = af? — 2b&,&5 + ¢£5 with a > 0,¢ > 0, completion of the
square arguments yield QF > & (ac — b*)/c and QF > £3(ac — b*)/a so that

ac — b? ac — b?

2QF > &+ £.
C a




Choosing

a0~y 2 0 0y a0~y :
=~? — b= —— d e=|—=
a v+ (89) , oF By an c oF ,
we easily find that

ar(Q)€7 + 2a2(q)é1éa + as(q)&;
1@7_12 3’722 3’72_12
> 2(3) |5+ (3 {”(%)} ]

9y _ cl0,q) ~ 1(0)
or - 1)

and from (H-2) and (19), there exists a constant C'; independent of ¢ such that

Oy _ B{e—1(0)}
L T

Note that

> Cy

where sufe - 100)}
C= 5 a0
With (H-1), there exists a constant C5 such that

8’72 a0~y )~
2 ! >
or {7 (80) } > (5

Cs = min {LW}Z [max]{z(e)}2+supsup

sefo2r] | ¢ —1(0) 9€[0,2m 9€Q 5eG

where

872 -
0

can be chosen independent of ¢ ( here we use (H-0) and (H-3) ). Thus if we choose
1 :
a= 502 min(1,Cs),

we obtain the coercivity (22) of the sesquilinear form &(g)(+,-). To prove the boundedness,
we note that

5(q)(w, )| <4 sup lai(q, 2)||ely ¢y
i<3,5€G

From (H-0) - (H-3), we have

sup |a;(¢q, 2)| < Ky for 1=1,2,3
zeG
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where K, is some constant independent of ¢. This implies the boundedness (23). To
establish the continuity property, we note that, for any ¢,¢ € @),

|7(q) (s, ) —0( 1) ()

‘/%/ [{al —a1(q )}gﬁp ?ﬁj + {as(q) — az(§)} (‘Z@ ?6/: N ch ?ﬁ)
dp O

+{as(q) — as(q) %%] dfdé‘.

Under the hypotheses (H-1) and (H-3), we can argue that a;(q), ¢ = 1,2, 3, are continu-
ous in L (G). We can thus infer the continuity of the sesquilinear form (18) with respect
to ¢ € () and the proof of Lemma 2 is thus completed.

Lemma 3. Let

a=uol(q), o=¢0T(q), and ¢" = ¢ 0 T(q)

be the transformed system state, the transformed solution, and the transformed function
associated with ¢*, respectively. Then, for every ¢ € (), there exists a unique solution

i=¢—¢" €V (25)
in the sense that ) )
o(q)(u,v) = =5(q)(¢",9) for € V. (26)

Moreover the solution @ in the system on G is bounded in V uniformly in ¢ € Q.

Proof. Using Lemma 2 and from (18), (21), and (20), we have that, for ¢ € V, and

¢ =poT(q),
2r pl(6) a ag@
v, = o drdf
|<P|Vq /0 /c(eﬁq){r Oy 20 } r
[ @W 0% 02 R
— /0 /E {a1 PR +2Cl2(g)%£+a3(q)% didb
> algly.

Similarly, by virtue of Lemma 2, it can be easily shown that
el < k2l
where k; does not depend on ¢ € (). This implies the V,-norm is equivalent to the norm

in V uniformly in ¢ € . Thus we have the solution @(q) = u(q) o T'(¢) in the sense of
(26) satisfying

_1
a(q)|y < a"Fu(q)lv, < a”TKi|¢" |y, < a”TKiky 2 |¢" |y

11



which follows from Lemma 1 and verifies the claim of Lemma 3.

~ Lemma 4. With the hypotheses (H-0) to (H-3), ¢ — tu(q) is continuous from @ to
V.
Proof. Let ¢* — ¢ in Q and let @(q¢"*),u(q) be corresponding solution of (26). That
o(q")a(g"),9) = —a(q)(¢,
o(g)(ulq),¥) = —o(q)(¢,
Substracting (28) from (27), we have
5(q*)(a(q"),v) — 6(q)(ulg), ¥) = [5(q) — 5(¢")](¢",¢) forall p € V.
Then we may write
5(q")(u(q") — alq), &) + [6(¢%) — 5(9)])(@(q), &) = [6(q) — 5(¢"))(67,¢b) for v € V. (29)

We note that while ¢* ¢ V — because of its boundary values it is only in Hl(é) —
it is readily seen from the proof of Lemma 2 that (24) holds for ¢ = ¢*. Choosing as
¥ = u(q*) — u(q) in V and using (22) and (24) in Lemma 2, we find from (29)

afa(q*) — a(q)ly < d(q*, 9){1671y + lala) v Halg") — alq)ly,

or
ali(q®) —u(q)ly < d(¢", a){16°]y + lulg)ly} — 0 as¢" —q.
This yields the desired continuity.

From (9), the system output has the form

: oo / /27r /1(9) . do 1 d¢
Yl = — : —0")— — — 0+0
{ p} 47T|S;| ; 0 c(f,q) " Sln( )8?“ r! COS( + )891
X {r2 + oy cos(f + 0") + hQ}_E drdf dr'df’
for ¢ =1,2,---m. (30)

From (30), the observation output for the transformed system can be written as

Y(q) = H(q)$(q), (31)
where H(q) : V. — R™ is given by
o UoltoA 2m N/ Al 8_95_ A a@ oo
[H(q) 3] = ] // / { )5 — (0.7, 0'5q) S5 drdods dd

12



] , M,
where
hi(r,0,7,05q) = h(r,0,7,0;q¢)sin(0 — ')
(7 B T o 4 1)
ho(r,0,7,0'5q) = 7"6(?“,97?',5';Q){V(flaé;Q)}_lmcosw+9N/)a

or
) = 7 [P+ {60} — 20y (7 6.q) cos(0 + 0) + 1]

_3
2

Lemma4. With the hypotheses (H-0) to (H-3), the mapping ¢ — Y'(¢) is continuous
from @ to R™.

Proof. Taking into account that the operator H(q) belongs to £(‘N/; R™) for each
g € @), we see that the above statement follows directly from Lemma 3.

Thus the identification problem of interest is defined by the fit-to-data functional

() = S[H(0)3(a) — Vil (32)

where {Y;} denotes the given observed data. The identification problem can then be
stated as follows:

(IDP): Find ¢* € @ which minimizes E(q) given by (32) subject to (25), (26), and
(31).

Theorem 1. Under the hypotheses (H-0)- (H-4), the problem (IDP) has at least

one solution ¢* € Q).

Proof. With Lemmas 3 to 5, the above statements follows from the compactness of

Q.
3. APPROXIMATE IDENTIFICATION PROBLEMS

The computational scheme we propose below is based on the use of a finite element
Galerkin approach to construct a sequence of finite dimensional approximating identifica-
tion problems. To approximate problem (IDP), we choose a sequence of finite dimensional
subspaces HY C V such that

|PNyy —opl;; — 0 as N — oo for hevV (33)

13



where PN is the orthogonal projection of H = LQ(G) onto HN. The approximating
system is defined for @™ (q) € HN by

5(q)(a™(q), ™) = =6(g)(¢7, ") for vV € H. (34)
From (31), the observation output for the approximate system (34) can be represented as
YV(q) = HY(9)6™(a), (35)

where HN(q) : HY — R™ and where qZN(q) — @V + ¢*. Then we seek to solve the
approximate identification problem:

(AIDP)V : Find ¢V € @ which minimizes

1 N
BY(g) = LY (000" (a) - Vil
subject to the finite dimensional system (34), (35).

Lemma 5. Let ¢V — ¢ € Q. Then @V (¢") — u(q) € V.

Proof. We have

Then it follows that
@"(q") = alg)ly < [a" (") — PYalg)ly + [P alq) — alg)ly

Hence from (33) it suffices to prove

[N (¢™) — PNa(q)ly; — 0 for ¢V — g€ Qas N — co.
Taking 1 = 1™ in (37) and subtracting this from (36), we obtain

5(q™) (@ (q"), vN) = 5(q) (@), ") = [6(q) — 6(¢M)](&",w™) for ¢V € HY.

Furthermore we have

(g™ (@ (q") = PMa(q), ") + 5 (¢"™)(PNi(q) — (q), ")

+o(™) = a(@)](alq), ™) = [6(q) — 5(¢™)](¢", ™).

Choosing ¥V = AN = 4V (¢"V) — PNu(q), we find that



From this we obtain

o] AN[G < K| PNa(g) — alg)ly ANy + d(q", @)lalg) | ANy + d(g,¢™)|6" |5 |AY]p.

Consequently, we have
o] ANy < Ko PYa(q) — a(g)ly + d(q", q)([a(g)ly + 16717).
Thus, given any ¢~ — ¢ € Q, it follows from (33) that AN — 0 as N — oo.
Since it can readily be shown that the approximate solution ¢V depends continuously on
q, solutions exist to the problem (AIDP)" for each N. Our convergence results for the

approximating identification problem (AIDP)" are summarized in the following theorem
which follows from standard arguments ( e.g., see [7] ).

Theorem 2. Suppose that hypotheses (H-0) to (H-3) hold and let ¢ be a solution
of the problem (AIDP)Y. Then the sequence {¢"} admits a convergent subsequence
{g™k} with ¢™ — ¢* as Ny — oo. Moreover, ¢* is a solution of the problem (IDP).

4. COMPUTATIONAL METHOD

It is rather straightforward to develop computational methods based on the preced-
ing foundations. For example, we may consider a linear spline approximation of a
parametrized function for ¢(q, ). Let SM be the set of piecewise linear splines ( see [5]

for more details ) with the knot sequence SY = {i27 /M }M and basis elements { BM}M .
Then we approximate the unknown defect shape function by

M
c(q,0)=>"¢"BY(0) for 0 €[0,2x]. (38)
=0
In order to ensure (H-0), we impose constraints on () expressed by
Q={qeR | ph<q<pi=12 - M}

It is clear that the defect shape function defined by (38) satisfies the hypotheses (H-2)
and (H-3). Let us choose U_, {t/NIN, as a set of basis functions in V. That is, for each
N, {$N}N | are linearly independent and Uyspan{N}Y, is dense in Hy((/). Then the
approximation subspaces can be chosen as H™ = span{¢N}¥ . An approximate solution

can be defined by
N
oV = + " =Y wiyl + 6" (39)
=1

where the coefficient vector w” = {w!'} is chosen such that, for j = 1,2,---, N,
NS NN Ix N
&(Q)(@/’j 72102' P ) = _&(Q)(¢*a¢j ).
=1

15



Hence the system can be approximated by solving the linear system

LY (qw™ = fN(q) (40)

where

[LN((])]Z',J' o &(Q)(@ZJ;V, %N) for i,7=1,2,---,N,

M)l = =6(q) (@7 0f)  for i=1,2,---,N.

The corresponding output can be computed as

YN (q) = HY(9)w" (q) + g(q) (41)

where

[HN(Q)]M < [H(q)]ﬂ/}j\] for +=1,2,---.m;3=1,2,---, N,

and where ot .
[Q(Q)]z = [H(q)]2¢* for 1= 17 27 cr, M,

respectively. Associated with the problem (AIDP)Y, the problem is to find the parameter
¢V € @Q which minimizes

EY(g) = 5V (g) - Vil (12)

subject to the finite dimensional system (39), (40), and (41). Solutions to the problem
(AIDP)" exist for each N. In order to implement the identification scheme, it is necessary
to evaluate the gradient of the cost functional (42). Let ¢ be an optimal solution of the
problem for (42). Then a necessary condition for ¢ to be optimal is characterized by

VEN(@Y) (= ¢Y) >0 for all g € Q,

where V, denotes the gradient of EV(q) with respect to ¢. From (42), the gradient of
EN(q) becomes, for i = 1,2, M,

OK™(q) afN M (q) dg
Y EN (M) = (- N (- " Vi) = Ya) (43
where v" is the solution of the adjoint system,

(K™ ()] "™ = [HY ()] (Y™ (q) = Ya).

With (43), numerical optimization techniques are readily applicable to the problem for
(42) ( see [6] and the references therein ).

5. CONCLUDING REMARKS
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The results given here, while applied to a particular domain described by the interior
boundary ¢(f, ¢) and exterior boundary [(), are rather generic in nature for elliptic prob-
lems with unknown domains. The techniques used here ( and the necessary assumptions
on the problems ) represent a rather nontrivial improvement of the results and ideas
presented in Chapter VI of Banks/Kunisch [7] for parameter estimation convergence in
elliptic problems. In particular, the presentation for the elliptic system in [7] requires a
nonvanishing positive coefficients in the lowest order term ( i.e., ¢(z) > ¢ > 0, see (1.3) of
[7]) in L(q)u = V- (aVu)+b-Vu+ cu that can be replaced with the techniques used here
( The results of [7] cannot be applied directly to the problem we treated here). While the
ideas are in the sprit of [7], the detailed arguments are more similar to an elliptic version
of the hyperbolic system presentation of Chapter 5 of [8] ( compare, in particular, (A3N)
and (HT7) of pages 124 in [8] with our conditions (33) and (24).

The generic nature of the results presented here is primarily manifested in the nature of the
transformation 7'(q) : G — (i, between the reference domain G and the unknown domain
(i,. As long as this map satisfies requirements on |V7'(¢)| and [VT(q)]”" needed above
and yields a transformed system with appropriately smooth coefficients a;(¢)(z = 1,2, 3),
the arguments remain valid even if the unknown domain is not “annular” in nature with
unknown boundary. For example, as shown in Fig. 5, a parallelpiped ( slit or crack line )
shaped damage and structure should be amenable to the arguments given here ( in this
case we would use rectangular coordinates in the place of polar coordinates ) where now
q parametrizes the slit or crack-like damage ( similar to the considerations in [3][4] on
thermal nondestructive evaluation ).
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